PARTIAL DIFFERENTIAL EQUATIONS

XAVIER ROS OTON

2. Laplace equation and eigenfunctions

(1) Let $\Omega \subset \mathbb{R}^n$ be an open set. Assume f is a continuous function such that $\int_{\Omega} f w = 0$ for all $w \in C_c^{\infty}(\Omega)$. Prove that it must be $f \equiv 0$ in Ω .

(2 points)

(2) Let $\Omega \subset \mathbb{R}^n$ be an open set. Assume $f \in L^1(\Omega)$ is such that $\int_{\Omega} f w = 0$ for all $w \in C_c^{\infty}(\Omega)$. Prove that it must be $f \equiv 0$ in Ω almost everywhere.

Hint: Use Lebesgue Differentiation Theorem.

(3 points)

(3) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Prove the Mean Value Property: if $u \in C^2(\overline{\Omega})$ satisfies $\Delta u = 0$ in Ω , then

$$
u(x) = \int_{B_r(x)} u \quad \text{for all} \quad B_r(x) \subset \Omega.
$$

Deduce the maximum principle:

$$
\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.
$$

<u>Hint</u>: Show that $\int_{B_r(x)} u = \int_{B_1} u(x + rz)dz$, and differentiate in r to show that this integral is constant in r .

(3 points)

(4) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. We say that $v \in C^2(\overline{\Omega})$ is subharmonic if

$$
-\Delta v \le 0 \quad \text{in} \quad \Omega.
$$

(i) Similarly to the previous exercise, prove that for any subharmonic function v we have

$$
v(x) \le \int_{B_r(x)} v \quad \text{for all} \quad B_r(x) \subset \Omega.
$$

(ii) Prove that $\max_{\overline{\Omega}} v = \max_{\partial \Omega} v$. Is the same true for the minimum of v?

(iii) Let $\phi \in C^{\infty}(\mathbb{R})$ be a convex function, and $u \in C^2$ be harmonic in $\Omega \subset \mathbb{R}^n$. Prove that the function $\phi(u)$ is subharmonic.

(iv) Prove that if u is harmonic in $\Omega \subset \mathbb{R}^n$, then $v := |\nabla u|^2$ is subharmonic.

(4 points)

- (5) Let $\Omega \subset \mathbb{R}^n$ be any bounded smooth domain, and let $u \in C^2(\overline{\Omega})$. Show that the following are equivalent:
	- (i) u is a solution of the Dirichlet problem

$$
\begin{cases} \Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega. \end{cases}
$$

 (i) u minimizes the energy functional

$$
\mathcal{E}(w) = \int_{\Omega} \frac{1}{2} |\nabla w|^2 + \int_{\Omega} fw
$$

among all functions $w \in C^2(\overline{\Omega})$ satisfying $w = 0$ on $\partial\Omega$.

(3 points)

- (6) Let $\Omega \subset \mathbb{R}^n$ be any bounded smooth domain, and let $u \in C^2(\overline{\Omega})$. Show that the following are equivalent:
	- (i) u is a solution of the Neumann problem

$$
\begin{cases}\n\Delta u = f & \text{in } \Omega \\
\partial_\nu u = 0 & \text{on } \partial\Omega.\n\end{cases}
$$

where ∂_{ν} is the normal derivative.

 (i) u minimizes the energy functional

$$
\mathcal{E}(w) = \int_{\Omega} \frac{1}{2} |\nabla w|^2 + \int_{\Omega} fw
$$

among all functions $w \in C^2(\overline{\Omega})$.

(4 points)

(7) Let $\Omega \subset \mathbb{R}^n$ be any bounded smooth and connected domain. Show that the only solutions $u \in C^2(\overline{\Omega})$ of the Neumann problem

$$
\left\{\begin{array}{rcl}\Delta u &=& 0\quad\text{in}\quad \Omega\\ \partial_\nu u &=& 0\quad\text{on}\quad \partial\Omega\end{array}\right.
$$

are $u \equiv c$, for some constant c.

(2 points)

(8) Let $\Omega \subset \mathbb{R}^n$ be any bounded smooth domain, and let $f \in L^2(\Omega)$ be such that $\int_{\Omega} f = 0$. Prove that there exists a minimizer $u \in H^1(\Omega)$ of the functional

$$
\mathcal{E}(w) = \int_{\Omega} \frac{1}{2} |\nabla w|^2 + \int_{\Omega} fw
$$

among all functions $w \in H^1(\Omega)$. What happens if $\int_{\Omega} f \neq 0$?

Hint: Notice that $\mathcal{E}(w) = \mathcal{E}(w + c)$ for any constant $c \in \mathbb{R}$. To prove the existence of a minimizer, take functions with $\int_{\Omega} u = 0$, and use the Poincaré inequality from Exercise (12) in Chapter 1.

(4 points)

(9) If we denote by $\lambda_k(\Omega)$ the k-th eigenvalue corresponding to the domain $\Omega \subset \mathbb{R}^n$, then what are the eigenvalues of the rescaled domain

$$
r\Omega = \{ rx \in \mathbb{R}^n : x \in \Omega \},\
$$

for $r > 0$?

(2 points)

(10) Let $Q = (0, \pi) \times (0, \pi)$ be a square in \mathbb{R}^2 .

(i) Find, by separation of variables, all eigenfunctions of the form $\phi(x_1, x_2) = \xi(x_1)\eta(x_2)$, as well as their corresponding eigenvalues λ .

(ii) Show that these eigenfunctions form a basis for $L^2(Q)$, and deduce that there are no more eigenfunctions other than the ones you found.

(iii) Denote as usual $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_k$ the ordered eigenvalues for the Laplacian in Q (counted with multiplicity). Prove that

$$
\lambda_k \asymp k \quad \text{as} \quad k \to \infty.
$$

(4 points)

(11) (i) Let $Q = (0, \pi)^n$ be a hypercube in \mathbb{R}^n . Follow the steps of the previous exercise to show that for such domain Q we have

$$
\lambda_k \asymp k^{2/n} \quad \text{as} \quad k \to \infty.
$$

(ii) Combine this with the conclusion of the next exercise to show that, for any bounded domain $\Omega \subset \mathbb{R}^n$, we have

$$
\lambda_k \asymp k^{2/n} \quad \text{as} \quad k \to \infty.
$$

(4 points)

(12) (i) Let $0 < \lambda_1 < \lambda_2 \leq \ldots$ be the eigenvalues of the Laplacian in Ω with Dirichlet boundary conditions. Prove that

$$
\lambda_k = \max_{\substack{f_1,\ldots,f_{k-1} \in L^2(\Omega) \\ \int_{\Omega} uf_i = 0 \\ ||u||_{L^2(\Omega)} = 1}} \min_{\substack{w \in H_0^1(\Omega) \\ ||v||_{L^2(\Omega)} = 1}} ||\nabla u||_{L^2(\Omega)},
$$

where the maximum is taken among all possible choices of $f_1, ..., f_{k-1} \in L^2(\Omega)$.

(ii) Deduce that, if we denote $\lambda_k(\Omega)$ the k-th eigenvalue for the domain Ω , then

$$
\Omega' \subset \Omega \qquad \Longrightarrow \qquad \lambda_k(\Omega') \ge \lambda_k(\Omega)
$$

for all $k = 1, 2, ...$

(4 points)

(13) Let $\Omega \subset \mathbb{R}^n$ be any bounded smooth and connected domain. Prove that there exists a sequence $0 = \mu_1 < \mu_2 \leq \ldots \leq \mu_n \to \infty$ of eigenvalues for the Laplacian with Neumann boundary conditions, with eigenfunctions $\varphi_k \in H^1(\Omega)$ solving

$$
\begin{cases}\n-\Delta \varphi_k = \mu_k \varphi_k & \text{in } \Omega \\
\partial_\nu \varphi_k = 0 & \text{on } \partial \Omega\n\end{cases}
$$

in the weak sense.

Prove also that these eigenfunctions φ_k form an orthonormal basis for $L^2(\Omega)$.

(4 points)